Shape-based Transfer Function Using Laplace-Beltrami Operator
نویسندگان
چکیده
We exploit the Laplace-Beltrami operator to represent shapes which in turn is used for designing a shape based transfer function for volume rendering. Laplace-Beltrami spectral measures are isometry invariant and are one of the most powerful ways to represent shape, also called “Shape-DNA”. Isosurfaces are extracted from the volume data and the Laplace-Beltrami operator is applied on these extracted isosurfaces. We use the Laplace-Beltrami spectrum of the extracted isosurfaces and the corresponding eigenvalues and eigenvectors for representing shape. These eigenvalues and eigenvectors are used to design the transfer function based on shape. We call these eigenvectors shape eigenvectors as they successfully define various shapes in a model. These shape eigenvectors are represented as parallel lines and the color and opacity values are varied using an interface which is a modified form of parallel coordinates, termed as parallel segmentation. We demonstrate the results of our method on several standard datasets. As we are using the shape eigenvectors to design the transfer function, we call this transfer function as shape-frequency based transfer function.
منابع مشابه
Laplace-Beltrami operator on Digital Curves
Many problems in image analysis, digital processing and shape optimization are expressed as variational problems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The discretization of the laplace-Beltrami operator has been widely stud...
متن کاملThe Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape Processing
The ubiquity of the Laplace-Beltrami operator in shape analysis can be seen by observing the wide variety of applications where it has been found to be useful. Here we demonstrate a small subset of such uses with their latest developments including a scale invariant transform for general triangulated meshes, an effective and efficient method for denoising meshes using Beltrami flows via high di...
متن کاملAnisotropic Laplace-Beltrami Operators for Shape Analysis
This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh p...
متن کاملDeformable Shape Retrieval by Learning Diffusion Kernels
In classical signal processing, it is common to analyze and process signals in the frequency domain, by representing the signal in the Fourier basis, and filtering it by applying a transfer function on the Fourier coefficients. In some applications, it is possible to design an optimal filter. A classical example is the Wiener filter that achieves a minimum mean squared error estimate for signal...
متن کاملDiscrete Laplace-Beltrami operators for shape analysis and segmentation
Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry processing to more recent 3D content management. In this scenario, spectral methods are extremely promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010